If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+60
We move all terms to the left:
-(-16Y^2+60)=0
We get rid of parentheses
16Y^2-60=0
a = 16; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·16·(-60)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*16}=\frac{0-16\sqrt{15}}{32} =-\frac{16\sqrt{15}}{32} =-\frac{\sqrt{15}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*16}=\frac{0+16\sqrt{15}}{32} =\frac{16\sqrt{15}}{32} =\frac{\sqrt{15}}{2} $
| .5=2x-4 | | 19x+9=x+171 | | 18p−15p=15 | | 3x^2+15x+19=0 | | 9x+16=5x-14 | | 5=q+13 | | 3m=3(m-4) | | 3=-16t^2+20t+1 | | X=(-5i)(-4i) | | 1+(-4x)=-39 | | 8x-6=6x8 | | -x^2+7x+1=13 | | 8x-6=6x=8 | | 3(x+1)−2x=0 | | p(p-4)-(2p+5)=-5(2p+1 | | 3/5x-1/2=7/2 | | m+4=13,2 | | X^2+3x-25=-7 | | 204=(3x+5)(3x) | | 7.6a+13=104.2 | | m+4=132 | | -2n−-18n−20n=-16 | | 16r+r-10r-5r=20 | | x2-52x-285=0 | | /3x+8=2(x-5) | | 422.25+6.25+x=1350 | | 4m=-10m-28 | | F(3)=8-3x^ | | -11=4x-43+12(2) | | -6(9x+5)-3x+4x=-408+6 | | 2x2+7x-56=91 | | 9+31+2x=x+28 |